NCYM, a Cis-Antisense Gene of MYCN, Encodes a De Novo Evolved Protein That Inhibits GSK3β Resulting in the Stabilization of MYCN in Human Neuroblastomas
نویسندگان
چکیده
The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.
منابع مشابه
Functional interplay between MYCN, NCYM, and OCT4 promotes aggressiveness of human neuroblastomas
Neuroblastoma is a pediatric solid tumor that originates from embryonic neural crest cells. The MYCN gene locus is frequently amplified in unfavorable neuroblastomas, and the gene product promotes the progression of neuroblastomas. However, the molecular mechanisms by which MYCN amplification contributes to stem cell-like states of neuroblastoma remain elusive. In this study, we show that MYCN ...
متن کاملID2 expression is not associated with MYCN amplification or expression in human neuroblastomas.
MYCN is a biologically and clinically important oncogene in human neuroblastoma as genomic amplification reliably predicts for aggressive tumor behavior and a poor prognosis. However, the mechanism by which MYCN amplification and overexpression contributes to a highly malignant phenotype remains obscure. ID2 is a dominant inhibitor of the RB1 tumor suppressor gene product and recently was sugge...
متن کاملE2F proteins regulate MYCN expression in neuroblastomas.
Amplification of the MYCN gene, resulting in overexpression of MYCN, distinguishes a subset of neuroblastomas with poor prognosis. The transcription factors driving MYCN expression in neuroblastomas are unknown. In transient-transfection assays, E2F-1, E2F-2, and E2F-3 activate a MYCN reporter construct dependent on the presence of several putative E2F-binding sites. Using chromatin immunopreci...
متن کاملGalectin-3 Impairment of MYCN-Dependent Apoptosis-Sensitive Phenotype Is Antagonized by Nutlin-3 in Neuroblastoma Cells
MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neurobla...
متن کاملVasoactive intestinal peptide decreases MYCN expression and synergizes with retinoic acid in a human MYCN-amplified neuroblastoma cell line.
Neuroblastoma is a pediatric tumor which can spontaneously regress or differentiate into a benign tumor. MYCN oncogene amplification occurs in 22% of neuroblastomas and is associated with poor prognosis. Retinoic acid (RA), a molecule able to induce differentiation and to decrease MYCN expression, is used in the therapy of neuroblastomas. The neuropeptide vasoactive intestinal peptide (VIP) is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014